action of acrolein on urea, was that containing the residue from one molecule of urea, the compound $CO.(NH)_2$. C_3H_4 .

XIII. NOTE ON AN EARTHY FERRIC SULPHATE FROM ARKANSAS

BY CHAS. E. WAIT.

Several weeks ago a sample of earth was sent to me for examination, from Southern Arkansas. It is a friable, yellowish substance, partly soluble in water, streak uncolored, taste astringent.

Upon analysis I find it contains the following :

	PER CENT.
Insoluble in cold water	12.61
Soluble in cold water	87.39
	100.00
The soluble portion consists of	
Fe ₂ O ₃	21.82
\$0 ₃	33.81
H ₂ O	31.76
	87.39
By assuming the following arrangement,	
Fe ₂ O ₃	21.82
SO ₃	33.81
H ₂ O combined	22.41
H _g O hygroscopic	9.35
	87.39

we are able to deduce a formula consistent with that of the native persulphate of iron, viz.: $Fe_2 (SO_4)_3 (H_2O)_9$.

If all the water be considered as belonging to the compound, the formula will be $\operatorname{Fe}_2(\operatorname{SO}_4)_3(\operatorname{H}_2\operatorname{O})_{13}$.

It is said an unlimited supply of this substance may be obtained.